49 research outputs found

    The Blast Energy Efficiency of GRBs

    Full text link
    Using data mostly assembled by previous authors, we consider the linear correlation between the apparent radiative efficiency Ï”Îł\epsilon_{\gamma} (defined as the ratio of isotropic equivalent radiative output to inferred isotropic equivalent kinetic energy of the blast) and EpeakαE_{peak}^{\alpha} where 1.4<α<21.4<\alpha<2, for 17 of 22 GRBs (Lloyd-Ronning and Zhang, 2004). We note in a quantitative manner that this is consistent with the hypothesis that Ï”Îł\epsilon_{\gamma} and EpeakE_{peak} are influenced by viewing angle. We suggest a more general theoretically derived expression for this correlation that could be tested with a richer data set. If the reduction in both Ï”Îł\epsilon_{\gamma} and EpeakE_{peak} is due to viewing angle effects, then the actual radiative efficiency is ∌7\sim 7. We also find preliminary evidence (with a small sample) for a separate class of weak GRB afterglows.Comment: Submitted to ApJL Feb. 10, 200

    Magnetic Field Effects on the Motion of Circumplanetary Dust

    Get PDF
    Hypervelocity impacts on satellites or ring particles replenish circumplanetary dusty rings with grains of all sizes. Due to interactions with the plasma environment and sunlight, these grains become electrically charged. We study the motion of charged dust grains launched at the Kepler orbital speed, under the combined effects of gravity and the electromagnetic force. We conduct numerical simulations of dust grain trajectories, covering a broad range of launch distances from the planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks, with both positive and negative electric potentials. Initially, we assume that dust grains have a constant electric potential, and, treating the spinning planetary magnetic field as an aligned and centered dipole, we map regions of radial instability (positive grains only), where dust grains are driven to escape or collide with the planet at high speed, and vertical instability (both positive and negative charges) whereby grains launched near the equatorial plane and are forced up magnetic field lines to high latitudes, where they may collide with the planet. We derive analytical criteria for local stability in the equatorial plane, and solve for the boundaries between all unstable and stable outcomes. Comparing our analytical solutions to our numerical simulations, we develop an extensive model for the radial, vertical and azimuthal motions of dust grains of arbitrary size and launch location. We test these solutions at Jupiter and Saturn, both of whose magnetic fields are reasonably well represented by aligned dipoles, as well as at the Earth, whose magnetic field is close to an anti-aligned dipole. We then evaluate the robustness of our stability boundaries to more general conditions. Firstly, we examine the effects of non-zero launch speeds, of up to 0.5 km s−1^{-1}, in the frame of the parent body. Although these only weakly affect stability boundaries, we find that the influence of a launch impulse on stability boundaries strongly depends on its direction. Secondly, we focus on the effects of higher-order magnetic field components on orbital stability. We find that vertical stability boundaries are particularly sensitive to a moderate vertical offset in an aligned dipolar magnetic field. This configuration suffices as a model for Saturn's full magnetic field. The vertical instability also expands to cover a wider range of launch distances in slightly tilted magnetic dipoles, like the magnetic field configurations for Earth and Jupiter. By contrast, our radial stability criteria remain largely unaffected by both dipolar tilts and vertical offsets. Nevertheless, a tilted dipole magnetic field model introduces non-axisymmetric forces on orbiting dust grains, which are exacerbated by the inclusion of other higher-order magnetic field components, including the quadrupolar and octupolar terms. Dust grains whose orbital periods are commensurate with the spatial periodicities of a rotating non-axisymmetric magnetic field experience destabilizing Lorentz resonances. These have been studied by other authors for the largest dust grains moving on perturbed Keplerian ellipses. With Jupiter's full magnetic field as our model, we extend the concept of Lorentz resonances to smaller dust grains and find that these can destabilize trajectories on surprisingly short timescales, and even cause negatively-charged dust grains to escape within weeks. We provide detailed numerically-derived stability maps highlighting the destabilizing effects of specific higher-order terms in Jupiter's magnetic field, and we develop analytical solutions for the radial locations of these resonances for all charge-to-mass ratios. We include stability maps for the full magnetic field configurations of Jupiter, Saturn, and Earth, to compare with our analytics. We further provide numerically-derived stability maps for the tortured magnetic fields of Uranus and Neptune. Relaxing the assumption of constant electric charges on dust, we test the effects of time-variable grain charging on dust grain motion in two distinct environments. Firstly, we examine orbital stability in the tenuous plasma of Jupiter's main ring and gossamer ring where sunlight, the dominant source of grain charging, is periodically interrupted by transit through the planetary shadow. This dramatically expands dynamical instabilities to cover a large range of grain sizes. Secondly, we study the motion of dust grain orbits in the dense plasma environment of the Io torus. Here dust grain charges deviate little from equilibrium, and our stability map conforms closely to that of constant, negatively-charged dust grains. Finally, we focus on the poorly understood spokes in Saturn's B ring, highlighting the observational constraints on spokes, and present our hypothesis for spoke formation

    TESS Observations of Kepler systems with Transit Timing Variations

    Full text link
    We identify targets in the Kepler field that may be characterized by transit timing variations (TTVs) and are detectable by the Transiting Exoplanet Survey Satellite (TESS). Despite the reduced signal-to-noise ratio of TESS transits compared to Kepler, we recover 48 transits from 13 systems in Sectors 14, 15, 26, 40 and 41. We find strong evidence of a nontransiting perturber orbiting Kepler-396 (KOI-2672) and explore two possible cases of a third planet in that system that could explain the measured transit times. We update the ephemerides and mass constraints where possible at KOI-70 (Kepler-20), KOI-82 (Kepler-102), KOI-94 (Kepler-89), KOI-137 (Kepler-18), KOI-244 (Kepler-25), KOI-245 (Kepler-37), KOI-282 (Kepler-130), KOI-377 (Kepler-9), KOI-620 (Kepler-51), KOI-806 (Kepler-30), KOI-1353 (Kepler-289) and KOI-1783 (Kepler-1662).Comment: 26 pages, 9 figure

    A Ground-Based Albedo Upper Limit for HD 189733b from Polarimetry

    Get PDF
    We present 50 nights of polarimetric observations of HD 189733 in BB band using the POLISH2 aperture-integrated polarimeter at the Lick Observatory Shane 3-m telescope. This instrument, commissioned in 2011, is designed to search for Rayleigh scattering from short-period exoplanets due to the polarized nature of scattered light. Since these planets are spatially unresolvable from their host stars, the relative contribution of the planet-to-total system polarization is expected to vary with an amplitude of order 10 parts per million (ppm) over the course of the orbit. Non-zero and also variable at the 10 ppm level, the inherent polarization of the Lick 3-m telescope limits the accuracy of our measurements and currently inhibits conclusive detection of scattered light from this exoplanet. However, the amplitude of observed variability conservatively sets a 3σ3 \sigma upper limit to the planet-induced polarization of the system of 58 ppm in BB band, which is consistent with a previous upper limit from the POLISH instrument at the Palomar Observatory 5-m telescope (Wiktorowicz 2009). A physically-motivated Rayleigh scattering model, which includes the depolarizing effects of multiple scattering, is used to conservatively set a 3σ3 \sigma upper limit to the geometric albedo of HD 189733b of Ag<0.37A_g < 0.37. This value is consistent with the value Ag=0.226±0.091A_g = 0.226 \pm 0.091 derived from occultation observations with HST STIS (Evans et al. 2013), but it is inconsistent with the large Ag=0.61±0.12A_g = 0.61 \pm 0.12 albedo reported by (Berdyugina et al. 2011).Comment: 10 pages, 9 figures, submitted to Ap

    Time variation of Kepler transits induced by stellar spots - a way to distinguish between prograde and retrograde motion. II. Application to KOIs

    Get PDF
    Mazeh, Holczer, and Shporer (2015) have presented an approach that can, in principle, use the derived transit timing variation (TTV) of some transiting planets observed by the KeplerKepler mission to distinguish between prograde and retrograde motion of their orbits with respect to their parent stars' rotation. The approach utilizes TTVs induced by spot-crossing events that occur when the planet moves across a spot on the stellar surface, looking for a correlation between the derived TTVs and the stellar brightness derivatives at the corresponding transits. This can work even in data that cannot temporally resolve the spot-crossing events themselves. Here we apply this approach to the KeplerKepler KOIs, identifying nine systems where the photometric spot modulation is large enough and the transit timing accurate enough to allow detection of a TTV-brightness-derivatives correlation. Of those systems five show highly significant prograde motion (Kepler-17b, Kepler-71b, KOI-883.01, KOI-895.01, and KOI-1074.01), while no system displays retrograde motion, consistent with the suggestion that planets orbiting cool stars have prograde motion. All five systems have impact parameter 0.2â‰Čbâ‰Č0.50.2\lesssim b\lesssim0.5, and all systems within that impact parameter range show significant correlation, except HAT-P-11b where the lack of a correlation follows its large stellar obliquity. Our search suffers from an observational bias against detection of high impact parameter cases, and the detected sample is extremely small. Nevertheless, our findings may suggest that stellar spots, or at least the larger ones, tend to be located at a low stellar latitude, but not along the stellar equator, similar to the Sun.Comment: V2: accepted to Ap
    corecore